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Abstract. Problems involving the management of groundwater resources occur routinely,
and management decisions based upon optimization approaches offer the potential to save
substantial amounts of money. However, this class of application is notoriously difficult to
solve due to non-convex objective functions with multiple local minima and both nonlinear
models and nonlinear constraints. We solve a subset of community test problems from this ap-
plication field using MODFLOW, a standard groundwater flow model, and IFFCO, an implicit
filtering algorithm that was designed to solve problems similar to those of focus in this work.
While sampling methods have received only scant attention in the groundwater optimization
literature, we show encouraging results that suggest they are deserving of more widespread
consideration for this class of problems. In keeping with our objectives for the community
problems, we have packaged the approaches used in this work to facilitate additional work
on these problems by others and the application of implicit filtering to other problems in this
field. We provide the data for our formulation and solution on the web.

Keywords: Implicit filtering, Well field design, Groundwater flow and transport

1. Introduction

Groundwater resources are important because about 50% of the population
of the United States rely upon this resource for drinking water. Typical goals
in groundwater resources management include designing and managing sys-
tems to supply drinking water and to restore contaminated drinking water to
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a usable quality at a minimum cost. Accomplishing these goals requires a
model to describe the system of concern, an appropriate objective function,
constraints, and an optimization algorithm. The objective function and con-
straints provide the linkage between the simulation model and the optimizer.
Because porous media systems are typically heterogeneous over small scales
and described by nonlinear processes, subsurface simulators can be expensive
to evaluate and subject to uncertainty, or stochastic in nature. The resulting
optimization problems can also be difficult, with objective functions that are
non-convex and have multiple local minima, and both models and constraints
that are nonlinear. For these reasons, subsurface optimization problems are
both important and challenging.

To aid the evolution of optimal design of subsurface flow and transport
applications, a set of community problems (CP’s) was developed, [30], that
are typical of problems commonly encountered and which cover a range of
complexity. It was reasoned that focusing on a common set of CP’s would
allow for not only advancement of approaches to solve an important set of
problems, but also a means to aid comparison of various aspects of the so-
lution approach on the same set of problems. It was also anticipated that the
CP’s would catalyze the introduction of new classes of optimization methods
into the groundwater field and result in more active participation of the ap-
plied mathematics community in the evolution of solution approaches for this
class of application.

A subset of the CP’s is a standard water supply application. Roughly
speaking, the objective is to locate a set of water supply production wells and
find their pumping rates such that cost is minimized subject to constraints on
the total amount of water that must be produced, the hydraulic head in the
wells, the production capacity of a well, and the portion of the domain over
which a well may be located. Evaluation of the objective function requires
a groundwater flow simulator that solves for hydraulic head as a function
of space and time given a spatial and temporal domain, material properties,
auxiliary conditions, and well design information.

Common approaches for solving water supply management problems in-
clude gradient-based methods or genetic algorithm (GA) approaches in which
a candidate set of well locations is selected and the pumping rate of each well
is a design variable. Gradient-based methods are not reliable because of the
non-convex, noisy nature of the problem. Global optimization methods such
as genetic and evolutionary algorithms [38, 40, 24, 1], simulated annealing
[28, 39], and tabu search [45] have been applied to many subsurface remedi-
ation problems (see [30] for many more references). However, these methods
can be expensive. Sampling methods are a potentially attractive alternative
class of approach for this sort of problem, which have received scant attention
in the water resources community but have been concluded to be deserving
of a more thorough investigation.
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In this paper we take the view that there is enough structure in the problem
to use a deterministic sampling method. These methods are designed to solve
problems with difficult, but not violently oscillatory optimization landscapes,
such as the ones in Figures 8, 9, 10, 11 in § 8. Gradient-based methods are
likely to have trouble with such problems, either finding local minima, stag-
nating, or failing to find a descent direction. In our testing of a gradient-based
method, which we report in § 8, we observed this type of failure. The Nelder-
Mead [34], Hooke-Jeeves [23], MDS [16, 43], DIRECT [25], and implicit
filtering [21, 20, 26] are examples of discrete sampling methods.

The objectives of this work are: (1) to provide an initial analysis of a subset
of groundwater CP’s, which have been recently published; (2) to formulate
a solution to these problems with a sampling method, in this case implicit
filtering; (3) to compare the results with a genetic algorithm approach, and
to explain why traditional gradient-based methods can and do fail; (4) to
examine the characteristics of the solution space and illustrate the challenges
that this class of problem poses; and (5) to point the way toward future
improvements for the solution of this class of problem.

2. Conceptual Model

An aquifer is a fully saturated, water-bearing region and is considered con-
fined if bounded on both the top and the bottom by essentially impermeable
material. An unconfined aquifer has the water table as its upper bound. The
main difference between the two geological formations is that the saturated
thickness of an unconfined aquifer varies as the hydraulic head varies, thus
leading to a nonlinear free-boundary problem.

We consider a well-field design problem. The hydrological settings are
homogeneous confined and unconfined aquifers in three spatial dimensions.
For the problems considered, a set of wells is distributed in the domain. Each
well is allowed either to inject or extract water. Well-field design problems
involve the selection of well locations and pumping rates to minimize the
cost of water production. The cost of supplying water typically involves the
cost to drill, equip, and connect wells to a treatment or distribution system,
and the cost to pump the water and maintain the well. In turn, the cost to
pump groundwater depends upon the energy needed to lift the water from its
level below the ground surface to the discharge point and to supply sufficient
discharge pressure to achieve the desired flow.

The decision variables for this type of problem are the pumping rates
{Qi}

n
i=1 (m3/s) at the n wells in the model and the locations {(xi, yi)}

n
i=1

of the wells. Pumping rates can be constant or variable in time depending
upon the application. In the application considered in this paper, a constant

katie.tex; 11/07/2003; 8:20; p.3



4

flow rate is realistic. This is because any transients decay very early in the
five year time horizon.

3. Formulation

The physical domain, see Figure 1, is Ω = [0, 1000] × [0, 1000] × [0, 30] m
with the ground elevation at zgs = 60 m for the confined aquifer and zgs = 30
m for the unconfined aquifer.

Flow in saturated porous media can be described, [30], by

Ss
∂h

∂t
= ∇ · (K∇h) + S, (1)

where Ss (1/m) is the specific storage coefficient, the unknown h (m) is the
hydraulic head, K (m/s) is the hydraulic conductivity [30]. Here the source
term S is a model of the wells, a sum of δ-functions that satisfies

∫

Ω
S(t)dΩ =

n∑

i=1

Qi. (2)

Ω is the spatial domain. The wells are assumed to extract from near the bottom
of the aquifer. If a numerical solution is discrete in the z-dimension then only
the bottom layer of cells/elements should include the well source terms.

For the confined aquifer, we use the following boundary and initial condi-
tions:

∂h

∂x

∣
∣
∣
∣
x=0

=
∂h

∂y

∣
∣
∣
∣
y=0

=
∂h

∂z

∣
∣
∣
∣
z=0

= 0, t > 0 (3)

qz(x, y, 30, t > 0) = −1.903 × 10−8(m/s) (4)

h(1000, y, z, t > 0) = 50− 0.001y(m) (5)

h(x, 1000, z, t > 0) = 50− 0.001x(m) (6)

h(x, y, z, 0) = hs (7)

Here

qz = −K
∂h

∂z

is the Darcy flux out of the domain, a negative sign in eqn (4) thus represents
flow into the aquifer or recharge that could be the result of rainfall infiltration
or leakage from an overlying aquifer, and hs is the steady state solution to the
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flow problem prior to the addition of wells. We use S s = 10−6 (1/m). For the
unconfined aquifer, (4), (5) and (6) are replaced with

qz(x, y, h, t > 0) = −1.903 × 10−8(m/s), (8)

h(1000, y, z, t > 0) = 20− 0.001y(m), (9)

and
h(x, 1000, z, t > 0) = 20− 0.001x(m). (10)

Ss = 2.0 × 10−1 is the specific yield of the unconfined aquifer. For the
homogeneous applications, K = 5.01 × 10−5 (m/s).

Dirichlet  Boundary Conditions
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z=0
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y=1,000 (m)

x=0 (m)
y=0 (m)

h=19 or 49 (m)
x=1,000 (m)
y=1,000 (m)

h=20 or 50 (m)
x=1,000 (m)
y=0 (m)

z=30Recharge into Aquifer Top,

No Flow at Aquifer Bottom,

Figure 1. Physical Domain

4. Objective Function

We consider a capital cost f c and an operational cost f o seeking to minimize
fT = f c +f o. The objective function depends on the pumping rates {Qi}

n
i=1

and locations {(xi, yi)}
n
i=1 of n operating wells. Note that Qi < 0 means the

well is extracting water, and Qi > 0 means the well is injecting water. For
this work, we begin with a virtual fixed well field containing N wells with
the number of operating wells n ≤ N.

katie.tex; 11/07/2003; 8:20; p.5



6

Since there is a fixed installation cost for wells, an important aspect of the
optimization procedure is the manner in which wells are removed from the
design, thereby significantly decreasing the total cost. A well is considered
installed and operating if |Qi| > 0.0001. If the optimizer specifies a value
with |Qi| ≤ 0.0001 then we neither apply the well source term nor do we
include the cost of the well in the objective function. This approach results in
non-smoothness in the objective function, but provides a reasonable mecha-
nism for removing wells from the design that our optimizer was capable of
triggering.

The objective function is given by

fT =
n∑

i=1

c0d
b0
i +

∑

Qi<−.0001

c1|Q
m
i |

b1(zgs − hmin)b2

︸ ︷︷ ︸

fc

+ (11)

tf




∑

i,Qi<−.0001

c2Qi(hi − zgs) +
∑

i,Qi>.0001

c3Qi





︸ ︷︷ ︸

fo

,

where the cost coefficients cj and exponents bj are given in Table I. Here di

is the depth of well i, Qm
i is the design pumping rate, hmin is the minimum

allowable head, hi is the hydraulic head in well i, tf is the total design time,
which was taken as 5 years, and zgs is the elevation of the ground surface.
Injection wells are assumed to operate under gravity feed. In f c, the first term
denotes the cost to install all the wells, and the second term accounts for the
additional cost for pumps for the extraction wells. In f o we have a lift cost
that applies to the extraction wells and an injection cost that applies to the
injection wells.

The design pumping rates {Qm
i }, i.e. the maximum rates at which a given

well can pump, depend upon the aquifer properties, casing and discharge
piping size, pump characteristics, screen length and opening size, effective-
ness of the development, and local geochemical conditions. One could, in
principal, treat the properties of the wells and pumps as optimization param-
eters. We do not do this here, and focus on more fundamental aspects of the
formulation.

5. Constraints

We constrain the hydraulic head and pumping rates for the objective function
given in (11). The constraints are given by
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Table I. Objective Function Data

data value units

c0 5.5 × 103 $/mb

c1 5.75 × 103 $/[(m3/s)b1 · mb2 ]

c2 2.90 × 10−4 $/m4

c3 1.45 × 10−4 $/m3

b0 0.3 -

b1 0.45 -

b2 0.64 -

zgs 60 confined m

zgs 30 unconfined m

di zgs m

Qm
i 1.5Qi m3/s

QT =
n∑

i=1

Qi ≤ Qmin
T , (12)

Qemax ≤ Qi ≤ Qimax, i = 1, ..., n, (13)

and
hmin ≤ hi ≤ hmax, i = 1, ..., n, (14)

where QT is the net pumping rate, Qmin
T is minimum allowable total ex-

traction rate, Qemax is the maximum extraction rate at any well, Qimax is
the maximum injection rate at any well, hmax is the maximum allowable
head, and hmin is the minimum allowable head. Values for the bounds in the
constraints are given in Table II. We require that the wells be at least 200 m
from the boundary on which Dirichlet boundary conditions are applied, i. e.

0 ≤ xi, yi ≤ 800. (15)

In addition to (15), we do not allow two wells to occupy the same grid
point. In the course of the optimization, if two wells converge to the same
location, our choice of simulator would implement the two wells as one well,
operating at the sum of the two pumping rates. In turn, only one well would
operate in the flow simulation, yet two wells would be included in the instal-
lation cost. For our choice of spatial discretization, this indirectly implies that
the distance between wells is at least 20m apart.

Constraint (12) sets a minimum target for extraction, which is the purpose
of the well field. For the problem considered here, the installation costs are far
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more that the operating costs for a single year. Therefore, once the minimum
extraction target is reached, it would only make sense to drill additional wells
if the long-term operating savings is significant. Since five wells extracting at
the maximum level satisfy (12) with equality, one logical formulation of the
problem is to find the optimal location of five wells, each extracting as much
as possible.

Constraint (13) reflects physical limits on the pumps and well design. Well
designs are typically limited by the size distribution of the porous medium
and the resulting size of the well screen.

The upper bound in constraint (14) keeps the hydraulic head below the
surface elevation and the lower bound ensures that excessive drawdown will
not occur. This constraint is a linear function of the pumping rates for the
confined case but a nonlinear function for the unconfined case, and in both
cases a highly nonlinear function of the locations of the wells.

Table II. Constraint Data

data value units

Qmin
T −3.2 × 10−2 m3/s

Qemax −6.4 × 10−3 m3/s

Qimax 6.4 × 10−3 m3/s

hmin 40 confined m

hmax 60 confined m

hmin 10 unconfined m

hmax 30 unconfined m

5.1. OPTIMIZATION PROBLEM FORMULATION

In this section we describe how we packaged the problem for the optimization
algorithm. The objective function f T is discontinuous, and some of the con-
straints (13) and (15) are simple bounds on the variables. Implicit filtering,
the optimization method we use in this paper, is designed to handle difficult
objective functions and bound constraints.

If we set n = 5, then the constraints (12) and (13) require the pumping
rates to be exactly Qmin

T /5. Thus, in this situation, we need only optimize
well locations and apply constraint (14). If we set n > 5, then we must also
optimize pumping rates and, therefore, all the constraints must be enforced by
the optimizer. Constraint (14) is highly nonlinear while constraint (12) is not a
box constraint, and neither constraint can be handled directly by the projected
quasi-Newton algorithm. In this case the objective function returns a failure
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when either (12) or (14) are violated. Our implementation of implicit filtering
will assign an artificial (see § 6.2) value to the function when it returns a
failure. This is a standard approach for handling nonlinear constraints in many
sampling methods, [42, 9, 27].

We will fix the number of wells and consider the vector of design variables

Z = (x1, . . . , xn, y1, . . . , yn, Q1, . . . , Qn)T ∈ R3n.

We define the feasible set for the bound constraints as

D0 = {Z | (13) and (15) hold.} = {Z |Zmin
i ≤ Zi ≤ Zmax

i }. (16)

Our optimization problem is

min
Z∈D0

fT (Z), (17)

where fT is given by (11) if (12) and (14) are satisfied and a failure is reported
if either of (12) or (14) are violated.

6. Implicit Filtering

The objective function is highly nonlinear and non-convex, discontinuous
because of the jumps as wells are added and deleted, and noisy, because of
internal iterations in the simulators. For these reasons, as we said in § 1,
a conventional gradient-based optimization method may fail. A sampling
method, which only evaluates the objecive function and constraints to guide
the optimization, is most appropriate for this kind of problem.

In this paper we use IFFCO [10], a FORTRAN implementation of the
implicit filtering algorithm [26, 21, 20]. We based this decision on our own
familiarity with the optimizer and our past success with it on other problems
of a similar mathematical nature [4, 42, 9], although we are not aware of
any use of implicit filtering for the type of application problem of concern
in this work. This choice significantly influenced the decisions on handling
constraints and the locations of the wells.

Implicit filtering has been described in detail and analyzed elsewhere. We
refer the reader to [26] for the details of the algorithm and to [26, 21, 11] for
convergence analysis. In § 6.1 we sketch the algorithm and its implementa-
tion in IFFCO only in enough detail to explain how this choice affected the
formulation of the problem.
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6.1. THE ALGORITHM

Implicit filtering is a projected quasi-Newton method that uses finite dif-
ference gradients. The difference increment is reduced as the optimization
progresses, thereby avoiding some local minima, discontinuities, or nons-
mooth regions that would trap a conventional gradient-based method. The
problems considered in this paper are exactly the kind that the method was
designed to solve.

Implicit filtering begins by rescaling the variables so that the feasible
region is

D = {ξ | 0 ≤ ξi ≤ 1}. (18)

We will discuss the algorithm in terms of the scaled feasible region in (18)
but the application in terms of the actual bounds (16).

To make the transition from fT to the scaled form, we define ξ component-
wise by

ξi = (Zi − Zmin
i )/(Zmax

i − Zmin
i )

and let

f(ξ) = fT (Z).

The optimization problem for f is now

minξ∈Df(ξ).

For a given difference increment (called a scale) δ ∈ (0, 1/2] and ξ ∈ D,
we let ∇δf(ξ) be the difference gradient whose components are

− the central difference gradient in the ith coordinate direction if both of
ξ ± δei ∈ D, or

− the one-sided difference gradient in the i coordinate direction if only one
of ξ ± δei ∈ D.

Since δ ≤ 1/2, at least one of ξ ± δei ∈ D. We let the stencil S(ξ) be
those points in the centered difference stencil that are in D and used in the
computation of ∇δf . If

f(ξ) ≤ min
η∈S(ξ)

f(η) (19)

we say that stencil failure has occurred and terminate the quasi-Newton
iteration at that scale.

If H is a model Hessian, a projected quasi-Newton iteration from ξ has
the general form

ξ(λ) = P(ξ − λH−1∇δf(ξ)),

katie.tex; 11/07/2003; 8:20; p.10



11

where P is the projection onto D

P(ξ)i =







0 if ξi ≤ 0
ξi if 0 < ξi < 1
1 if ξi ≥ 1

In IFFCO, the step length λ is computed with a quadratic model [10] and
a step is accepted if the sufficient decrease condition

f(ξ(λ))− f(ξ) ≤ α∇δf(ξ)T (ξ(λ)− ξ), (20)

holds. In IFFCO, as is standard, α = 10−4. We say that the quasi-Newton
iteration is successful if

‖ξ − ξ(1)‖ ≤ τδ. (21)

The algorithmic parameter τ can have a significant effect on the performance
of the optimization. For the problems we consider here, however, we were
able to successfully use the default value of τ = 1.

The finite difference projected quasi-Newton loop in IFFCO is summa-
rized in algorithm fdquasi. fdquasi is a naturally parallel algorithm; all
the function evaluations needed to compute ∇δf can be done in parallel. We
exploited this simple parallelism to perform the computations reported in this
paper.

Algorithm 1 fdquasi(ξ, f, pmax, τ, δ, amax)

p = 1
while p ≤ pmax and ‖ξ −P(ξ −∇δf(ξ))‖ ≥ τδ do

compute f and ∇δf
if (19) holds then

terminate and report stencil failure
end if
update the model Hessian H if appropriate; solve Hd = −∇δf(ξ)
use a backtracking line search, with at most amax backtracks, to find a
step length λ
if amax backtracks have been taken then

terminate and report line search failure
end if
ξ ← P(ξ + λd)
p← p + 1

end while
if p > pmax report iteration count failure

Implicit filtering calls fdquasi repeatedly with a sequence of scales {δk}.
Algorithm imfilter is a simple sketch.
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Algorithm 2 imfilter(ξ, f, pmax, τ, {δk}, amax)

for k = 0, . . . do
fdquasi(ξ, f, pmax, τ, δk, amax)

end for

The algorithmic parameters that are important to implicit filtering are the
limit amax on the number of step size reductions, pmax on the number of
nonlinear iterations, and the parameter τ in the termination criterion. For the
calculations reported here, we set pmax = 100 (the default), τ = 1 (the
default), and amax = 3 (the default). The parameters in imfilter that control
the quasi-Newton loop are the sequence of scales {δk}. Our choice in this
work was

δk = 2−k−1, 0 ≤ k ≤ 10.

The analysis of implicit filtering begins with the paradigm

f = fS + φ (22)

where fS is a smooth function and φ represents the “noise” in the problem.
For the theoretical convergence results in [42, 26, 11] we assume that φ is an
everywhere-defined function on Ω and set

‖φ‖S(ξ) = max
η∈S(ξ)

|φ(ξ)|.

One can show that if either (19) or (21) hold, that

‖P(ξ −∇fS(ξ))‖ = O(δ + ‖φ‖S(ξ)/δ). (23)

The convergence theory for implicit filtering [26, 21, 11] are based on (23).
IFFCO supports the SR1 [7, 18] and the BFGS [41, 8, 19, 22] quasi-

Newton models of the Hessian. We used the SR1 update in this paper. In our
experience the SR1 update performs better for bound-constrained problems.

Implicit filtering can be restarted after it terminates and the convergence
theory [21] is stronger if one does that. In practice, restarting usually has no
effect. For the problems in this paper, however, we had to restart IFFCO once
to obtain consistently good results.

6.2. FAILURE OF THE FUNCTION

IFFCO responds to a failure of f in two ways. If the failed function evaluation
fT (z) is part of the evaluation of ∇hfT (ξ), then an artificial value [9] of

f∗ + 10−6|f∗|

katie.tex; 11/07/2003; 8:20; p.12
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is assigned to f(z). Here f ∗ is the largest function value in the stencil S(ξ). If
the function evaluation failure is part of the line search, the the value fscale
is assigned to fT .

fscale is an approximation to the maximum value of f T in the feasible
set D0 for the bound constraints (16). We set fscale to 20% more than the
value of f at the initial iterate in this paper.

This approach to handling constraints is natural if the failure of the objec-
tive function is a consequence of, for example, an internal iteration’s failure to
converge. In the case of the problem considered here, while the constraints are
directly specified by (14), the evaluation of hi requires a call to the simulator
which, as a function of the well locations, is highly nonlinear even for the
continuous problem. For the discrete problem considered here, where the
well locations are rounded to grid points before the call to the simulator, the
constraint function is discontinuous.

7. Evaluation of the Objective Function

IFFCO requires an external subroutine to evaluate the objective function f T .
To do this we must compute the hydraulic head values, {hi}, at the well
locations {(xi, yi)} for a given set of pumping rates {Qi}. Computation of
{hi} uses a groundwater flow simulator to solve (1). For this work we use the
U.S. Geological Survey code MODFLOW-96 [31]. MODFLOW is a block-
centered finite difference code that simulates saturated groundwater flow and
allows for a variety of boundary conditions and irregular physical domains.
MODFLOW is widely used and well supported.

A MODFLOW simulation requires an input file containing the location
and pumping rates of the wells in the model. If n > 5, each function evalu-
ation requires a new set of pumping rates and thus the MODFLOW well file
must be created each time the objective function is evaluated. Moreover, once
the MODFLOW simulation is complete, the values of hi must be extracted
from the MODFLOW output file. A typical function evaluation is shown in
Figure 2.

To generate the necessary data files to run MODFLOW we used the Groundwater
Modeling System (GMS), version 3.1. GMS is a modular interface to a vari-
ety of flow and transport codes, including MODFLOW. GMS has a graphical
environment that allows the user to generate grids, define characteristics of
the porous media, and visualize solutions. GMS was used to generate the
starting heads for (7), to create the necessary data files for MODFLOW, to
determine an appropriate initial iterate for the optimization, and then again to
test the results of the optimizer.
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Figure 2. Objective Function Evaluation

8. Numerical Results

We consider two formulations of the design space. For this work, the instal-
lation cost of an extraction well, which is roughly $20,000, is high compared
to the annual operating cost which is roughly $1,000. Since n = 5 wells
extracting at Qemax = −0.0064(m3/s) satisfies the water supply demand
(12) exactly, one obvious formulation is to fix n = 5 and {Qi}

5
i=1 = −0.0064

and seek the optimal locations, {(xi, yi)}
5
i=1 to minimize only the operational

cost (f o in (11)). We also include a formulation in which we start with N = 6
wells and seek the optimal locations and pumping rates to minimize (11),
fT = f c + fo. Intuitively, since the installation cost is so high, we would
expect the five well configuration to have the lowest cost.

We examined the performance of one gradient-based code, the FDNIPS
solver from the OPT++ v2.0 [33] framework. This code is a nonlinear interior
point code based on the work in [17, 2, 3]. The code uses finite difference
gradients, either trust region or line search globalization, and a choice of three
merit functions. We tried several combinations of the options. In every case
the optimization failed after 1000 calls to the function or failed because the
line search had reduced the step length 40 times without a sufficient decrease
in the merit function.

For comparison, we include results obtained with a simple genetic algo-
rithm (GA). The performance of a GA for constrained optimization problems
often depends strongly on a number of factors including the method used
to encode the design variables, the choice of selection, crossover, and mu-
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tation operators, and the manner in which constraints are handled [36, 29].
Here, we consider a single-objective GA which incorporates both real- and
binary-coded variables, and uses binary tournament selection [15]. For the
real-coded variables, the simulated binary crossover (SBX) operator [15, 14]
with polynomial mutation is used while single-point crossover with bitwise
mutation are used for binary-coded variables.

An approach based on [12] is used to include constraints without the use
of penalty parameters. Box constraints such as those in (13) are enforced
automatically in the generation of candidate design variables, while a con-
straint such as (12) is formulated as a non-negative function g(Z) ≥ 0. The
GA tournament selection process is then modified to account for the three
scenarios: (1) when two feasible solutions are compared, the one with lower
objective value is preferred; (2) when a feasible and infeasible solution are
compared, the feasible one is taken; and (3) when two infeasible solutions are
compared the one with lower overall constraint violation is preferred [12].

Parameters like the population size, number of generations, as well as the
probabilities and distribution indexes chosen for the crossover and mutation
operators effect the performance of a GA [36, 29]. For the purposes of our
comparison, we wished to limit the number of simulations performed by
the GA to a range of 2 to 3 times the number required by IFFCO. Since
the total number of objective function evaluations is roughly the product of
the population size and number of generations, this restricted our choices to
fairly small populations and few generations. We also wished to use similar
parameter values across the various problems. Although we did not perform
a systematic study to find the best possible combinations, we experimented
with a series of population sizes, numbers of generations, and crossover and
mutation parameters to find a combination that gave representative perfor-
mance for each of the problems we considered. Unless noted, the values used
are listed Table III.

The GA code used is implemented in C and is available for download
from [13]. The user is required to implement problem-specific routines for
evaluating objective functions and constraints.
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Table III. GA parameters

30 size of population

30 number of generations

0.9 crossover probability

0.1 real-coded mutation probability

20 distribution index for real-coded crossover

10 distribution index for real-coded mutation

0.5 binary-coded mutation probability

0.1 niching-parameter for constraints

8.1. SPATIAL DISCRETIZATION

We use the same spatial discretization for both formulations. For the confined
aquifer we discretize the domain Ω = [0, 1000]× [0, 1000]× [0, 30] (m) on an
equally spaced 50×50×10 grid. For the unconfined aquifer, we used MOD-
FLOW to determine the saturated domain Ωunc = [0, 1000] × [0, 1000] ×
[0, 27] ⊂ Ω and then discretized Ωunc on an equally spaced 50 × 50 × 10
grid.

8.2. FIVE WELL FORMULATION

8.2.1. Initial Iterate
IFFCO requires a feasible initial iterate. Figure 3 shows the steady state flow
field for the confined aquifer. Since the head value is high in the lower left
corner we initially placed one well there. After the wells are activated, the
constraint on the drawdown is violated if the wells are too close together. We
looked at several different initial iterates until we found one that satisfied the
drawdown constraint for both the confined and unconfined aquifer. We found
that placing the remaining four wells close to the specified head boundaries
and significantly apart from each other was feasible for both physical do-
mains. Figure 4 shows the relative location of the wells and the pressure head
field for the confined aquifer with the wells pumping at the initial iterate. Note
the same initial well locations were used for both aquifers.
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We refer to the confined aquifer as CON and unconfined aquifer as UNC.
The function value at the initial iterate was $23,204 for CON and $26,958
for UNC. Table IV shows the minimum cost found and the number of calls
to MODFLOW for both optimizers and aquifers. IFFCO reduced the cost by
6% for the confined aquifer and 11% for the unconfined aquifer. For both
aquifers, the minimum cost found by the GA after 10 generations was 5%
higher than the cost found by IFFCO–which is high considering the decrease
from the initial iterate. Table V shows the initial x-y coordinates for the 5
wells and the optimal locations for each aquifer. The well locations at the
optimal point lie on the boundary constraint, (15). This is physically rea-
sonable, since the head values are higher in that region due to the Dirichlet
boundary conditions. The GA’s cost was higher than IFFCO’s because well
5 in the confined case and well 1 in the unconfined case are not relocated
close enough to the Dirichlet boundary conditions where the head values are
higher.

In our evaluation of performance, we count only the expensive calls to the
simulator as opposed to cumulative calls to the function. This is the approach
taken in [6]. To see how this is a more realistic way to measure cost, consider
the case where the linear constraint (12) is violated. One can detect this viola-
tion, and return a failure for f , without calling the expensive flow simulator.
IFFCO is being modified to make it easy for the user to evaluate cost at a
finer granularity than this, to allow for the use of multiple simulators within
the evaluation of the objective function and constraints. While this is a simple
change in a serial code, correctly counting the calls to the various simulators
in a parallel implementation requires considerable care.

Figure 5 is a plot of the value of the objective function against the cumu-
lative number of calls to the simulator. IFFCO is currently being modified to
allow the user to easily count calls to the objective function and calls to the
individual simulators that are used to compute it. We set a function evaluation
budget of 10,000 for this work and IFFCO converged to an optimal point
within approximately 3% of the budget, terminating the optimization based
on the sequence of finite difference scales. Figure 5 shows that after only
roughly 100 function evaluations, the objective function does not decrease
significantly.

Figures 6 and 7 show the head contours in the layers containing the wells
with the wells at the optimal locations.

8.3. SIX WELL FORMULATION

The results above are based on the heuristic that installing the minimum
number of wells (5) that meet the extraction target is the best approach. To
test this, we compared the five well configuration with all wells pumping at
the maximum extraction rate to a six well configuration with both locations
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Table IV. Cost: 5 Wells

Optimizer Problem min f MODFLOW Calls

IFFCO CON $21,830 275

GA CON $22,822 330

IFFCO UNC $23,930 302

GA UNC $25,164 328

Table V. Optimal Locations

Init Co IFFCO GA IFFCO GA

(m) CON (m) CON (m) UNC (m) UNC (m)

X(1) 350.0 401.7 655.1 464.2 600.0

Y(1) 725.0 800.0 737.8 800.0 216.2

X(2) 775.0 800.0 794.3 800.0 397.5

Y(2) 775.0 800.0 782.3 800.0 774.4

X(3) 675.0 776.9 755.6 800.0 796.5

Y(3) 675.0 481.1 203.1 445.4 706.0

X(4) 200.0 138.2 569.3 138.2 149.7

Y(4) 200.0 800.0 798.3 800.0 771.9

X(5) 725.0 798.4 303.8 800.0 799.3

Y(5) 350.0 168.9 501.6 144.8 513.3

and pumping rates as decision variables. We included the installation cost (f c

in (11)) in the objective function for these runs. If the six well problem is
initialized with all wells pumping at the maximum extraction rate, then one
well is removed from the design in the course of the optimization and the
minimum function value is within 0.2% of that found with the original five
well configuration. If the six wells are initialized with

Qi = Qmin
T /6, i = 1 . . . 6,

which is a feasible and sensible initial iterate, then a suboptimal point is
found. All wells remain pumping close to the initial pumping rates, although
the locations align with the specified head boundary conditions.

The objective function for the six well problem contained a large instal-
lation cost, f c, per well. A common approach for such conditions is to use
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Figure 6. Confined Aquifer

a mixed-integer formulation [37, 44, 30, 35]. Specifically, given the fact that
f c was significantly larger than fo and that a minimum of five wells were
required to satisfy the extraction target, a reasonable way to recast the prob-
lem was to include an integer variable indicating which, if any, well should be
removed from the design. It was straightforward to include an integer variable
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Figure 7. Unconfined Aquifer

s ranging from 1 to 8 in the GA’s formulation. A value of s in the range
1, . . . , 6 resulted in shutting off the corresponding well, while s = 7, 8 led
to six well designs. In addition, a well was removed from the design if its
pumping rate fell below the installation threshold, regardless of the value
of s. The unequal ranges associated with five and six well designs skewed
the GA’s formulation to favor five-well designs. This reflected our heuristic
that installing the minimum number of wells was likely to be cheaper than a
six-well design.

Table VI shows the minimum cost and the number of calls to MODFLOW
for both optimizers, aquifers for the better initial iterate. The cost at the initial
iterate was $170,972 for the confined aquifer and $152,878 for the unconfined
aquifer. Both the GA and IFFCO were able to remove one well from the
design, resulting in a solution comparable to the five well configuration and
reducing the cost by roughly 20%. For the suboptimal initial iterate, IFFCO
was only able to decrease the cost 1%. The GA did not find anything bet-
ter than the initial iterate in 30 generations (over 100 function evaluations)
for either aquifer with the suboptimal initial iterate included in the initial
population.

8.4. OPTIMIZATION LANDSCAPES

The five well configuration does not have a discontinuous installation cost.
To get a better understanding of the objective function for this formulation,
we fixed wells 2-5 and computed the cost while letting the x and y coordi-
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Table VI. Cost: 6 Wells

Optimizer Problem min f MODFLOW Calls

IFFCO CON $140,237 346

GA CON $140,628 464

IFFCO UNC $124,582 327

GA UNC $127,069 161

nates for well 1 vary between 20 and 800 meters. Figure 8 shows the cost
landscape near the initial iterate for the confined aquifer and Figure 9 shows
the landscape near the initial iterate for the unconfined aquifer. The peaks
in the landscapes occur when two wells get close together, making the head
values low and hence the operational cost higher. When two wells get too
close they violate (14), leaving a small infeasible region inside each of the
peaks. These peaks also make the landscapes nonconvex and introduce local
minima. When we try to evaluate the function at an infeasible point, we do not
plot an artificial value. Note that only a subset of Ω is feasible, especially for
the unconfined aquifer near the initial iterate. The high infeasibility was due
to repeated violation of the head constraint (14), which is why the unconfined
case is more challenging. There are also small discontinuities apparent in
the landscapes since we round real numbers to grid locations to run the flow
simulator.

Figures 10 and 11 are the surfaces obtained when wells 2-5 are set at the
optimal locations for the confined and unconfined aquifers.

katie.tex; 11/07/2003; 8:20; p.22



23

0

200

400

600

800 0

200

400

600

800

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

x 10
4

y
x

F
u
n
c
ti
o
n
 V

a
lu

e

Figure 8. Landscape near initial iterate: confined aquifer
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Figure 11. Landscape near solution: unconfined aquifer
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8.5. DISCUSSION

• The numerical results indicate that the six well formulation is much more
difficult than the five well formulation since one well must be removed from
the design while the remaining wells extract at the maximum extraction rate.
IFFCO did well on the the six well formulation with an initial iterate with all
wells extracting at the maximum rate. In the other case a local minimum is
found. With or without the mixed-integer formulation, the six well problem
proved difficult for the GA, since removing a well only led to a feasible iterate
if the other five were pumping at the maximum rate. The GA was able to find
a feasible five well solution when the better initial iterate was included as a
member of the initial population. With a completely random initial population
or with the sub-optimal initial iterate included, the GA solution for the con-
fined aquifer problem was a sub-optimal six well design. The same was true
for the unconfined case. However, the GA with a completely random popu-
lation was unable to find a feasible iterate for the unconfined problem even
when using a population size of two hundred and running for two hundred
generations.
• We also considered the possibility that, over a longer time period, the six
well model with the suboptimal initial iterate may be superior to the five well
model. We ran both the confined and unconfined problems for one year to
determine the annual operational cost. One can see that a time of roughly
130 years for the confined aquifer and 90 years for the unconfined aquifer
is needed to obtain a lower using the six well model. Hence the five well
results are the most realistic. We ran both problems again with the longer
time horizons to confirm that the six well model would outperform the five
well model.
• It is common in practice to start with a large, fixed grid of wells and seek
only the optimal pumping rates, removing wells from the design as needed.
We tried this approach, using N = 16 so that we seek the optimal rates,
{Qi}

16
i=1 to minimize fT = f c + f o. Neither IFFCO nor the GA was able

to converge to the five well solution. We tried several different initial iter-
ates for IFFCO and at best, in 429 function evaluations, IFFCO had left 10
wells in the design and reduced the cost from $ 424,123 to $ 262,558 for
the confined aquifer. The results were similar for the unconfined aquifer, but
it was even more challenging to find a feasible initial iterate. We performed
several experiments with IFFCO and with a good initial iterate, IFFCO was
able to converge to the five well solution with up to N = 9 candidate wells
initially fixed on the grid. With a relatively large number of fixed wells, it was
again natural to use a mixed-integer formulation for the GA. This time, the
design variables consisted of a rate and binary “on-off” switch for each of the
N = 16 wells. Starting from a random initial population, the GA produced a
six well design for both the confined and unconfined problems. The final cost
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for the confined aquifer design was fT = $161,588 after 510 function eval-
uations, while the unconfined aquifer solution had a cost of fT = $142,755
after 359 function evaluations.
• This application is challenging for formulations with N > 5 wells since
wells must be removed from the design space to decrease the installation cost.
Removing wells from the design is an active area of research and numerous
approaches exist for approximating fixed costs with continuous functions
(see [32] and the references therein). Our approach for removing a well if
|Qi| < 10−4 results in a discontinuous fixed cost. This approach was imple-
mented due to its simplicity, but also because the implicit filtering algorithm is
designed for problems with discontinuous landscapes. As the number of wells
increased, it was more difficult to find a feasible initial iterate and even for the
six well formulation, we found that IFFCO required a decent initial iterate. A
possible remedy for this might be to use another optimization routine as an
initial iterate generator for IFFCO. This will be the subject of future work.
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9. Conclusions

This work was an initial analysis of a subset of the community problems pro-
posed in [30]. The formulation of the objective function and constraints are
discontinuous and have local minima as the optimization landscapes verify.
These features are the reason for the failure of the gradient-based method
(see § 8). As pointed out in [30], deterministic sampling methods have not
been used to their full potential in the subsurface optimization community.
In this work we found a solution to the well-field design application with the
implicit filtering algorithm and we compared our results to those obtained
with a simple genetic algorithm.

We found these problems to be challenging for several reasons. A minimal
cost is obtained with few wells pumping at large rates. For these problems,
local minima exist when more wells are extracting at low costs. A large
decrease in the objective function occurs when a well is removed from the
design space. The installation cost for this work is discontinuous, yet we
found that with good initial data, that the implicit filtering algorithm could
perform well despite the discontinuous formulation for N < 9. Another
challenge is that the feasible region, especially for the unconfined aquifer, is
small. Although implicit filtering started with a feasible initial iterate, much
experimental work was done to find one. The genetic algorithm was unable
to find a feasible point for the six well formulation and required a feasible
point in the initial population in order for the optimization to progress for the
unconfined aquifer.

We can extend this study to improve the solution for this type of problem.
• IFFCO requires a feasible initial iterate, and the numerical results show that
a good initial iterate is needed for the optimization. Surrogate models based
on statistical sampling [5, 6] may be a good way to explore design space for
good initial iterates.
• As pointed out in [30], a more accurate realization of the subsurface is
needed for solutions of this class of problems to be used in decision making.
Adding heterogeneities to the domain would create a more realistic snap-
shot of the subsurface yet would make the optimization landscapes much
more challenging. More robust optimization techniques may be needed as
the conceptual domain becomes more realistic.
• We used MODFLOW to simulate flow for a well-field design application,
despite the simulator’s simple well model. The real-valued well location that
is output from the optimizer is rounded to a grid location. For a more accurate
solution, a simulator that is able to more accurately resolve flow around the
well is essential. A well model that need not place wells at the center of a cell
would be ideal.
• This was the first attempt at obtaining a solution to any of the problems pro-
posed in [30]. An in-depth comparison of sampling methods, including those
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that use a surrogate response surface, is currently being done and is necessary
before any solid conclusions can be made on which method performs best for
this class of problems.

10. Downloading and Running the Test Problems

The problems can be obtained from
http://www4.ncsu.edu/˜ctk/community.html
The test problems are packaged as compressed UNIX tar files. The serial

codes are for the g77 compiler and have been tested on SUN SparcStations
running Solaris, various Intel platforms running Red Hat Linux 7.3 and 8.0,
and an Apple Macintosh G4 running OSX 10.2. The MPI version of the codes
has been tested on an IBM-SP3 and a DELL Linux server. IFFCO is included
in the packages. The README files in the main directory explain how to
assemble the files and interpret the results.

MODFLOW can be obtained directly from the USGS at the URL
http://water.usgs.gov/software/modflow-96.html
The USGS provides compiled executables for SUN, SGI, and DOS sys-

tems, as well as UNIX source. Our packages provide makefiles for some other
UNIX environments.
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